4 research outputs found

    Neural Substrates of Fear Generalization and Its Associations with Anxiety and Intolerance of Uncertainty

    Get PDF
    Fear generalization - the tendency to interpret ambiguous stimuli as threatening due to perceptual similarity to a learned threat – is an adaptive process. Overgeneralization, however, is maladaptive and has been implicated in a number of anxiety disorders. Neuroimaging research has indicated several regions sensitive to effects of generalization, including regions involved in fear excitation (e.g., amygdala, insula) and inhibition (e.g., ventromedial prefrontal cortex). Research has suggested several other small brain regions may play an important role in this process (e.g., hippocampal subfields, bed nucleus of the stria terminalis [BNST], habenula), but, to date, these regions have not been examined during fear generalization due to limited spatial resolution of standard human neuroimaging. To this end, the proposed project utilized high resolution spatial resolution of 7T fMRI to (1) characterize the neural circuits involved in threat discrimination and generalization, and (2) examine modulating effects of trait anxiety and intolerance of uncertainty on neural activation during threat generalization. In a sample of 31 healthy undergraduate students, significant positive generalization effects (i.e., greater activation for stimuli with increasing perceptual similarity to a learned threat cue) were observed in the visual cortex, thalamus, habenula and BNST, while negative generalization effects were observed in the dentate gyrus, CA1, CA3, and basal nucleus of the amygdala. Associations with individual differences were limited, though greater generalization in the insula and primary somatosensory cortex was correlated with self-reported anxiety. Overall, findings largely support previous neuroimaging work on fear generalization and provide additional insight into the contributions of several previously unexplored brain regions

    Moderating Effects of Harm Avoidance on Resting-State Functional Connectivity of the Anterior Insula

    Get PDF
    As an index of behavioral inhibition and an individual’s propensity to avoid, rather than seek, potentially dangerous situations, harm avoidance has been linked to internalizing psychopathology. Altered connectivity within intrinsic functional neural networks has been linked to internalizing psychopathology; however, less is known about the effects of harm avoidance on functional connectivity within and between these networks. Importantly, harm avoidance may be distinguishable from trait anxiety and have clinical relevance as a risk factor for psychopathology. To this end, the current study aimed to examine associations between harm avoidance and resting state functional connectivity. A sample of undergraduate students (n=92) completed a resting state functional magnetic resonance imaging (fMRI) scan and self-report measures of harm avoidance and trait anxiety. Results indicated a main effect of harm avoidance on functional connectivity, such that higher harm avoidance was associated with decreased connectivity between the right anterior insula and clusters in the precuneus/PCC, left lateral parietal lobe, and left superior/middle frontal gyrus. Higher harm avoidance was also associated with decreased connectivity between the left anterior insula and precuneus/PCC. There were no effects of trait anxiety on functional connectivity of the anterior insula. Overall, the results indicate that individual differences in harm avoidance relate to disruptions in internetwork connectivity that may contribute to deficits in appropriately modulating attentional focus

    The novel compound PBT434 prevents iron mediated neurodegeneration and alpha-synuclein toxicity in multiple models of Parkinson’s disease

    No full text
    Abstract Elevated iron in the SNpc may play a key role in Parkinson’s disease (PD) neurodegeneration since drug candidates with high iron affinity rescue PD animal models, and one candidate, deferirpone, has shown efficacy recently in a phase two clinical trial. However, strong iron chelators may perturb essential iron metabolism, and it is not yet known whether the damage associated with iron is mediated by a tightly bound (eg ferritin) or lower-affinity, labile, iron pool. Here we report the preclinical characterization of PBT434, a novel quinazolinone compound bearing a moderate affinity metal-binding motif, which is in development for Parkinsonian conditions. In vitro, PBT434 was far less potent than deferiprone or deferoxamine at lowering cellular iron levels, yet was found to inhibit iron-mediated redox activity and iron-mediated aggregation of α-synuclein, a protein that aggregates in the neuropathology. In vivo, PBT434 did not deplete tissue iron stores in normal rodents, yet prevented loss of substantia nigra pars compacta neurons (SNpc), lowered nigral α-synuclein accumulation, and rescued motor performance in mice exposed to the Parkinsonian toxins 6-OHDA and MPTP, and in a transgenic animal model (hA53T α-synuclein) of PD. These improvements were associated with reduced markers of oxidative damage, and increased levels of ferroportin (an iron exporter) and DJ-1. We conclude that compounds designed to target a pool of pathological iron that is not held in high-affinity complexes in the tissue can maintain the survival of SNpc neurons and could be disease-modifying in PD

    INSTITUTIONAL TRANSFORMATIONS

    No full text
    corecore